On Computations of Hurwitz-hodge Integrals
نویسنده
چکیده
We describe a method to compute Hurwitz-Hodge integrals.
منابع مشابه
The Orbifold Quantum Cohomology of C/z3 and Hurwitz-hodge Integrals
Let Z3 act on C 2 by non-trivial opposite characters. Let X = [C/Z3] be the orbifold quotient, and let Y be the unique crepant resolution. We show the equivariant genus 0 Gromov-Witten potentials FX and F Y are equal after a change of variables — verifying the Crepant Resolution Conjecture for the pair (X , Y ). Our computations involve Hodge integrals on trigonal Hurwitz spaces which are of in...
متن کاملThe Orbifold Quantum Cohomology of C/z3 and Hurwitz-hodge Integrals
Let Z3 act on C by non-trivial opposite characters. Let X = [C/Z3] be the orbifold quotient, and let Y be the unique crepant resolution. We show the equivariant genus 0 Gromov-Witten potentials FX and F are equal after a change of variables — verifying the Crepant Resolution Conjecture for the pair (X , Y ). Our computations involve Hodge integrals on trigonal Hurwitz spaces which are of indepe...
متن کاملHodge-type integrals on moduli spaces of admissible covers
Hodge integrals are a class of intersection numbers on moduli spaces of curves involving the tautological classes λi, which are the Chern classes of the Hodge bundle E. In recent years Hodge integrals have shown a great amount of interconnections with Gromov-Witten theory and enumerative geometry. The classical Hurwitz numbers, counting the numbers of ramified Covers of a curve with an assigned...
متن کاملHodge Integrals, Hurwitz Numbers, and Symmetric Groups
Abstract. We prove some combinatorial results related to a formula on Hodge integrals conjectured by Mariño and Vafa. These results play important roles in the proof and applications of this formula by the author jointly with ChiuChu Melissa Liu and Kefeng Liu. We also compare with some related results on Hurwitz numbers and obtain some closed expressions for the generating series of Hurwitz nu...
متن کاملA Relative Riemann-hurwitz Theorem, the Hurwitz-hodge Bundle, and Orbifold Gromov-witten Theory
We provide a formula describing the G-module structure of the Hurwitz-Hodge bundle for admissible G-covers in terms of the Hodge bundle of the base curve, and more generally, for describing the G-module structure of the push-forward to the base of any sheaf on a family of admissible Gcovers. This formula can be interpreted as a representation-ring-valued relative Riemann-Hurwitz formula for fam...
متن کامل